Introduction:

All New Buildings should be made earthquake resistant so that we do not add to the stock of existing unsafe buildings. Since most of the buildings are constructed using brickwork or, solid hollow concrete blocks with flat roofs, very simple illustrated guidance is provided in the attached brochure for incorporating the earthquake resistant features suitable for seismic zone IV.

Essential Elements for Earthquake Safety:

The essential elements required to make a building earthquake safe are as given in Figure 1. Some additional requirements are detailed in the following paragraphs.

1. **GOOD CEMENT MORTAR:**

 The cement mortar should be used in the ratio of 1 part of cement with 6 parts of sand (1 sack of cement mixed with 6 equal sacks of sand).

2. **HORIZONTAL SEISMIC BANDS:**

 A seismic band consists of reinforced concrete flat runner through all external and internal masonry walls at the following levels in the building.

 a. at the plinth level of the building
 b. at the levels of lintels of doors and windows
 c. at the ceiling level of roofs consisting of wooden joists or, prefabricated reinforced concrete beams or, planks. *(Such band will not be necessary if the roof consists of Reinforced Concrete or, Reinforced Brick slabs cast on the walls covering a minimum of 2/3 of the thickness of the wall.)*

 The dimensions of the band and the reinforcement inside depend upon the length of the walls between the perpendicular cross walls. The table below (Table-1) shows the dimensions to be adopted for the seismic bands and the internal reinforcement details to be provided. The reinforcement and bending details of seismic bands are given in the Figure-2. Reinforcing bars will be of Fe 415 type [TOR or, High Yield Strength Deformed, i.e. HYSD bars]

1. The details given here are extracted from IS: 4326-1993 Code of Practice as applicable to buildings with Brick/ Concrete block walls and R.C. flat slab roofs. Details not given here may be seen in the Code.
Section of the Band with 2 longitudinal steel bars

2. Longitudinal reinforcements

Section of the Band with 4 longitudinal steel bars

1. Lateral Ties

Structural Plan at L-type wall junction

2. Vertical reinforcement at corners

b, b1, b2 Wall thickness

Structural Plan at T-type wall junction

3. Dimensional view of the L-type wall junction

3. Dimensional view of the T-type wall junction

(a) Section of the Band with 2 longitudinal steel bars

(b) Section of the Band with 4 longitudinal steel bars

(c) Structural Plan at L-type wall junction

(d) Structural Plan at T-type wall junction

(e) 3 Dimensional view of the L-type wall junction

(f) 3 Dimensional view of the T-type wall junction

Figure-2: Reinforcement and Bending Details of Seismic Bands

Table-1: Recommended size and longitudinal steel in Seismic Bands (Zone IV)

<table>
<thead>
<tr>
<th>Internal length of wall</th>
<th>Residential buildings</th>
<th>Important Public Buildings (Schools, Hospitals, Meeting Halls, Anganwadis, etc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Size of the band</td>
<td>No. of Bars</td>
</tr>
<tr>
<td>5 m or, less</td>
<td>10 cm x wall width</td>
<td>2</td>
</tr>
<tr>
<td>6 m</td>
<td>10 cm x wall width</td>
<td>2</td>
</tr>
<tr>
<td>7 m</td>
<td>15 cm x wall width</td>
<td>4</td>
</tr>
<tr>
<td>8 m</td>
<td>15 cm x wall width</td>
<td>4</td>
</tr>
</tbody>
</table>

3. **VERTICAL REINFORCEMENT IN THE BRICK WALLS:**

For earthquake safety in seismic zone IV reinforcing bars have to be embedded in brick masonry at the corners of all the rooms and the side of the door openings. Window openings larger than 60 cm in width will also need such reinforcing bars (Figure – 4). The diameter of the bar depends upon the number of storeys in the building. The recommendations are given in Table-2.

Providing the vertical bars in the brickwork and concrete blocks requires special techniques which could be easily learnt by the supervising engineers and masons will need to be trained.
These vertical bars have to be started from the foundation concrete, will pass through all seismic bands where they will be tied to the band reinforcements using binding wire and embedded to the ceiling band/roof slab as the case may be using a 300 mm 90° bend. Sometimes the vertical bars will not be made in one full length. In that case the extension of the vertical reinforcement bars are required, an overlap of minimum of 50 times the bar diameter should be provided. The two overlapped reinforcement bars should be tied together by using the binding wires.

Table-2: Recommended size of vertical steel in Seismic Bands (Zone IV)

<table>
<thead>
<tr>
<th>No. of storeys</th>
<th>Floor</th>
<th>Residential buildings *</th>
<th>Important Public Buildings *</th>
<th>Dia of Single HYSD (TOR) Bar at corners of room (mm)</th>
<th>Dia of Single HYSD(TOR) Bar at corners of room (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>One</td>
<td>-</td>
<td>10</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two</td>
<td>Top</td>
<td>10</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bottom</td>
<td>12</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Three</td>
<td>Top</td>
<td>10</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Middle</td>
<td>12</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bottom</td>
<td>12</td>
<td>16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*a Building of four storey though permitted in Zone IV, but not desirable.

Table-3: Recommended joint details with the vertical reinforcement at corner for masonry walls using different kind of materials

<table>
<thead>
<tr>
<th>Type of Joint</th>
<th>Corner reinforcement in case of Brick Masonry</th>
<th>Corner reinforcement in case of Solid Concrete Block Masonry</th>
<th>Corner reinforcement in case of Hollow Concrete Block Masonry (see the hole and slit made)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L- Joint</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T- Joint</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. VERTICAL REINFORCEMENT AT JAMBS OF OPENINGS:
All door and window openings wider than 600 mm will have vertical reinforcement in jambs as shown in Figure-4.

![Figure-4: Typical Details of Providing Vertical Steel Bars around doors/windows](image)

5. FOUNDATION

Foundation width 'B' should be decided by the load coming on the foundation and the bearing capacity. Masonry width may be reduced by ½ times T in every step of 150 mm height.

NOTE:
In sandy soils with high water table within 8 m depth below ground level, which may get liquefied during earthquake of MSK intensity VIII, pile foundation need to be used in consultation with the Structural/Geotechnical Engineer.

![Figure-5: Foundation Detail with Plinth Band in Brick or Concrete Block Masonry](image)

Issued in public interest by:

J&K State Disaster Management Authority

Dept of Disaster Management, Relief, Rehabilitation and Reconstruction